‘水’电‘高能耗大户,AI智能高速发展背后的焦虑
AI大模型在给人类社会带来巨大变革的同时,也因为能耗问题饱受争议。 经济学人最新发稿称:包括超级计算机在内的高性能计算设施,正成为能源消耗大户。根据国际能源署估计,数据中心的用电量占全球电力消耗的1.5%至2%,大致相当于整个英国经济的用电量。预计到2030年,这一比例将上升到4%。 人工智能不仅耗电,还耗水。谷歌发布的2023年环境报告显示,其2022年消耗了56亿加仑(约212亿升)的水,相当于37个高尔夫球场的水。其中,52亿加仑用于公司的数据中心,比2021年增加了20%。 面对巨大能耗成本,人工智能(AI)想要走向未来,经济性已经成为ChatGPT亟待解决的现实问题。而如果要解决能耗问题,任何在现有技术和架构基础上的优化措施都将是扬汤止沸,在这样的背景下,前沿技术的突破或是才破解AI能耗困局的终极方案。 人工智能正在吞噬能源 从计算的本质来说,计算就是把数据从无序变成有序的过程,而这个过程则需要一定能量的输入。 仅从量的方面看,根据不完全统计,2020年全球发电量中,有5%左右用于计算能力消耗,而这一数字到2030年将有可能提高到15%到25%,也就是说,计算产业的用电量占比将与工业等耗能大户相提并论。 2020年,中国数据中心耗电量突破2000亿度,是三峡大坝和葛洲坝电厂发电量总和(约1000亿千瓦时)的2倍。 实际上,对于计算产业来说,电力成本也是除了芯片成本外最核心的成本。 如果这些消耗的电力不是由可再生能源产生的,那么就会产生碳排放。这就是机器学习模型,也会产生碳排放。ChatGPT也不例外。 有数据显示,训练 GPT-3 消耗了1287MWh(兆瓦时)的电,相当于排放了552吨碳。对于此,可持续数据研究者卡斯帕路德维格森还分析道:“GPT-3 的大量排放可以部分解释为它是在较旧、效率较低的硬件上进行训练的,但因为没有衡量二氧化碳排放量的标准化方法,这些数字是基于估计。另外,这部分碳排放值中具体有多少应该分配给训练ChatGPT,标准也是比较模糊的。需要注意的是,由于强化学习本身还需要额外消耗电力,所以ChatGPT在模型训练阶段所产生的碳排放应该大于这个数值。”仅以552吨排放量计算,这相当于126个丹麦家庭每年消耗的能量。 在运行阶段,虽然人们在操作ChatGPT时的动作耗电量很小,但由于全球每天可能发生十亿次,累积之下,也可能使其成为第二大
‘水’电‘高能耗大户,AI智能高速发展背后的焦虑 Read More »